.
-

A History of Science
Williams 
Tome I
Tome II
Tome III Tome IV

Book 4, chapter VI
Theories of organic evolution
Goethe and the metamorphosis of parts
Williams
When Coleridge said of Humphry Davy that he might have been the greatest poet of his time had he not chosen rather to be the greatest chemist, it is possible that the enthusiasm of the friend outweighed the caution of the critic. But however that may be, it is beyond dispute that the man who actually was the greatest poet of that time might easily have taken the very highest rank as a scientist had not the muse distracted his attention. Indeed, despite these distractions, Johann Wolfgang von Goethe achieved successes in the field of pure science that would insure permanent recognition for his name had he never written a stanza of poetry. Such is the versatility that marks the highest genius.

It was in 1790 that Goethe published the work that laid the foundations of his scientific reputation - the work on the Metamorphoses of Plants, in which he advanced the novel doctrine that all parts of the flower are modified or metamorphosed leaves.

"Every one who observes the growth of plants, even superficially," wrote Goethe, "will notice that certain external parts of them become transformed at times and go over into the forms of the contiguous parts, now completely, now to a greater or less degree. Thus, for example, the single flower is transformed into a double one when, instead of stamens, petals are developed, which are either exactly like the other petals of the corolla in form, and color or else still bear visible signs of their origin.

"When we observe that it is possible for a plant in this way to take a step backward, we shall give so much the more heed to the regular course of nature and learn the laws of transformation according to which she produces one part through another, and displays the most varying forms through the modification of one single organ.

"Let us first direct our attention to the plant at the moment when it develops out of the seed-kernel. The first organs of its upward growth are known by the name of cotyledons; they have also been called seed-leaves.

"They often appear shapeless, filled with new matter, and are just as thick as they are broad. Their vessels are unrecognizable and are hardly to be distinguished from the mass of the whole; they bear almost no resemblance to a leaf, and we could easily be misled into regarding them as special organs. Occasionally, however, they appear as real leaves, their vessels are capable of the most minute development, their similarity to the following leaves does not permit us to take them for special organs, but we recognize them instead to be the first leaves of the stalk.

"The cotyledons are mostly double, and there is an observation to be made here which will appear still more important as we proceed - that is, that the leaves of the first node are often paired, even when the following leaves of the stalk stand alternately upon it. Here we see an approximation and a joining of parts which nature afterwards separates and places at a distance from one another. It is still more remarkable when the cotyledons take the form of many little leaves gathered about an axis, and the stalk which grows gradually from their midst produces the following leaves arranged around it singly in a whorl. This may be observed very exactly in the growth of the pinus species. Here a corolla of needles forms at the same time a calyx, and we shall have occasion to remember the present case in connection with similar phenomena later.

"On the other hand, we observe that even the cotyledons which are most like a leaf when compared with the following leaves of the stalk are always more undeveloped or less developed. This is chiefly noticeable in their margin which is extremely simple and shows few traces of indentation.

"A few or many of the next following leaves are often already present in the seed, and lie enclosed between the cotyledons; in their folded state they are known by the name of plumules. Their form, as compared with the cotyledons and the following leaves, varies in different plants. Their chief point of variance, however, from the cotyledons is that they are flat, delicate, and formed like real leaves generally. They are wholly green, rest on a visible node, and can no longer deny their relationship to the following leaves of the stalk, to which, however, they are usually still inferior, in so far as that their margin is not completely developed.

"The further development, however, goes on ceaselessly in the leaf, from node to node; its midrib is elongated, and more or less additional ribs stretch out from this towards the sides. The leaves now appear notched, deeply indented, or composed of several small leaves, in which last case they seem to form complete little branches. The date-palm furnishes a striking example of such a successive transformation of the simplest leaf form. A midrib is elongated through a succession of several leaves, the single fan-shaped leaf becomes torn and diverted, and a very complicated leaf is developed, which rivals a branch in form.

"The transition to inflorescence takes place more or less rapidly. In the latter case we usually observe that the leaves of the stalk loose their different external divisions, and, on the other hand, spread out more or less in their lower parts where they are attached to the stalk. If the transition takes place rapidly, the stalk, suddenly become thinner and more elongated since the node of the last-developed leaf, shoots up and collects several leaves around an axis at its end.

"That the petals of the calyx are precisely the same organs which have hitherto appeared as leaves on the stalk, but now stand grouped about a common centre in an often very different form, can, as it seems to me, be most clearly demonstrated. Already in connection with the cotyledons above, we noticed a similar working of nature. The first species, while they are developing out of the seed-kernel, display a radiate crown of unmistakable needles; and in the first childhood of these plants we see already indicated that force of nature whereby when they are older their flowering and fruit-giving state will be produced.

"We see this force of nature, which collects several leaves around an axis, produce a still closer union and make these approximated, modified leaves still more unrecognizable by joining them together either wholly or partially. The bell-shaped or so-called one-petalled calices represent these cloudy connected leaves, which, being more or less indented from above, or divided, plainly show their origin.

"We can observe the transition from the calyx to the corolla in more than one instance, for, although the color of the calyx is still usually green, and like the color of the leaves of the stalk, it nevertheless often varies in one or another of its parts - at the tips, the margins, the back, or even, the inward side - while the outer still remains on green.

"The relationship of the corolla to the leaves of the stalk is shown in more than one way, since on the stalks of some plants appear leaves which are already more or less colored long before they approach inflorescence; others are fully colored when near inflorescence. Nature also goes over at once to the corolla, sometimes by skipping over the organs of the calyx, and in such a case we likewise have an opportunity to observe that leaves of the stalk become transformed into petals. Thus on the stalk of tulips, for instance, there sometimes appears an almost completely developed and colored petal. Even more remarkable is the case when such a leaf, half green and half of it belonging to the stalk, remains attached to the latter, while another colored part is raised with the corolla, and the leaf is thus torn in two.

"The relationship between the petals and stamens is very close. In some instances nature makes the transition regular - e.g., among the Canna and several plants of the same family. A true, little-modified petal is drawn together on its upper margin, and produces a pollen sac, while the rest of the petal takes the place of the stamen. In double flowers we can observe this transition in all its stages. In several kinds of roses, within the fully developed and colored petals there appear other ones which are drawn together in the middle or on the side. This drawing together is produced by a small weal, which appears as a more or less complete pollen sac, and in the same proportion the leaf approaches the simple form of a stamen.

"The pistil in many cases looks almost like a stamen without anthers, and the relationship between the formation of the two is much closer than between the other parts. In retrograde fashion nature often produces cases where the style and stigma (Narben) become retransformed into petals - that is, the Ranunculus Asiaticus becomes double by transforming the stigma and style of the fruit-receptacle into real petals, while the stamens are often found unchanged immediately behind the corolla.

"In the seed receptacles, in spite of their formation, of their special object, and of their method of being joined together, we cannot fail to recognize the leaf form. Thus, for instance, the pod would be a simple leaf folded and grown together on its margin; the siliqua would consist of more leaves folded over another; the compound receptacles would be explained as being several leaves which, being united above one centre, keep their inward parts separate and are joined on their margins. We can convince ourselves of this by actual sight when such composite capsules fall apart after becoming ripe, because then every part displays an opened pod."[1]

The theory thus elaborated of the metamorphosis of parts was presently given greater generality through extension to the animal kingdom, in the doctrine which Goethe and Oken advanced independently, that the vertebrate skull is essentially a modified and developed vertebra. These were conceptions worthy of a poet - impossible, indeed, for any mind that had not the poetic faculty of correlation. But in this case the poet's vision was prophetic of a future view of the most prosaic science. The doctrine of metamorphosis of parts soon came to be regarded as of fundamental importance.

But the doctrine had implications that few of its early advocates realized. If all the parts of a flower - sepal, petal, stamen, pistil, with their countless deviations of contour and color - are but modifications of the leaf, such modification implies a marvellous differentiation and development. To assert that a stamen is a metamorphosed leaf means, if it means anything, that in the long sweep of time the leaf has by slow or sudden gradations changed its character through successive generations, until the offspring, so to speak, of a true leaf has become a stamen. But if such a metamorphosis as this is possible - if the seemingly wide gap between leaf and stamen may be spanned by the modification of a line of organisms - where does the possibility of modification of organic type find its bounds? Why may not the modification of parts go on along devious lines until the remote descendants of an organism are utterly unlike that organism? Why may we not thus account for the development of various species of beings all sprung from one parent stock? That, too, is a poet's dream; but is it only a dream? Goethe thought not. Out of his studies of metamorphosis of parts there grew in his mind the belief that the multitudinous species of plants and animals about us have been evolved from fewer and fewer earlier parent types, like twigs of a giant tree drawing their nurture from the same primal root. It was a bold and revolutionary thought, and the world regarded it as but the vagary of a poet.


 

 

.


[Littérature][Textes][Bibliothèque]

[Pages pratiques][Aide][Recherche sur Internet]

© Serge Jodra, 2006. - Reproduction interdite.