.
-


La comète de Encke

Comète


Comète de Encke.
La comète de Encke vue en 1983 par le télescope spatial infrarouge ISO.
Notez la queue dirigée vers le haut à partir du noyau, 
et la trainée de poussières (bande oblique) nouvellement découverte.
Crédit : ESA
La comète d'Encke est la comète périodique qui accomplit sa révolution dans le temps le plus court, aussi, on l'a nommée comète à courte période. Découvert à Marseille, le 20 novembre 1818, par Pons, cet astre a été étudié par Arago, Olbers, qui ont reconnu son identité avec les comètes de 1786, 1795, 1805. Encke en détermina les éléments elliptiques en 1819, et c'est ce qui lui a fait donner son nom. 
Dans les circonstances les plus favorables, cet astre brille comme une étoile de cinquième magnitude; le plus souvent, elle n'est visible que dans les lunettes ou dans les télescopes, sous la forme d'une masse vaporeuse presque sphérique, sans noyau et sans queue. Chose singulière, car elle est contraire à ce que l'on observe avec les autres comètes, cet astre varie en même temps de forme et de dimensions, et c'est au voisinage de son périhélie qu'un la voit sous le plus petit volume. Cette comète présente encore une autre particularité; ses retours, régulièrement constatés, montrent que la durée de sa révolution va en diminuant sans cesse. La comète se rapproche donc constamment du Soleil, et il arrivera un jour, encore éloigné, où les spirales qu'elle décrit autour de cet astre seront assez amoindries pour qu'elle aille se précipiter sur le Soleil. On a cherché à expliquer ce fait en supposant qu'il existe un milieu résistant autour du Soleil, et que l'effet de ce milieu est d'accélérer la révolution des astres qui circulent dans ces régions. Van Asten, puis Backlund, ont repris l'étude des mouvements de cet astre et sont arrivés à ces conclusions que les perturbations exercées par les planètes du Système solaire causent l'accélération.
C'était la deuxième comète, après celle de Halley dont on ait pu ainsi calculer l'orbite. Elle accomplit sa révolution en 3 ans et; ou en 1200 jours environ. Son mouvement est direct, son ellipse, inclinée de 13° sur l'écliptique, a une excentricité égale à 0,849. Sa distance moyenne au Soleil est 2,2 UA; sa distance périhélie, 0,33 UA; sa distance aphélie, 4,07 UA. Elle traverse donc les orbites de Mercure, Vénus, la Terre et Mars, mais n'atteint pas celle de Jupiter. Elle n'a pas de queue et se compose d'un noyau environné d'une nébulosité. On a parfois supposé que l'un de ses fragments pourrait être entré dans l'atmosphère terrestre en 1908 et être à l'origine de l'événement de la Tunguska (Météorites). Les planètes dont elle croise la route suffisent à perturber assez sa course pour modifier l'intervalle de ces passages au périhélie, ou sa durée de la révolution. On a cherché à en tirer parti pour calculer la masse de Mercure d'après les dérangements qu'elle cause dans sa marche.
-
La comète de Encke en novembre 2003.
La comète de Encke en novembre 2003.
(c) Michael Holloway.

Le noyau de la comète de Encke a pu être observé par radar, et il a été possible de déterminer son diamètre : quelque chose comme deux kilomètres. Observée par ailleurs à l'aide du télescope spatial infrarouge ISO, au début des années 1980, la comète a montré l'abondance de poussières, ordinairement inaccessibles à l'observation, qu'elle perd sur son orbite, en plus de celles qui sont visibles dans sa queue. Ce résultat à conduit à réévaluer la composition des comètes. Elles s'avèrent plus riches en poussières que prévu, et corrélativement plus pauvres en glace. De quoi faire évoluer le modèle classique de la "boule de neige sale" utilisé pour décrire les comètes en modèle de la "boule de boue", à laquelle s'apparente apparemment la comète de Encke. Un résultat qui va dans le sens de l'effacement de la frontière entre astéroïdes (faits de roches) et comètes (faites de glace). Ajoutons que cette comète est l'une de celles dont l'étude est au programme de la mission spatiale Contour.

.


[Constellations][Système solaire][Dictionnaire cosmographique]

[Pages pratiques][Aide][Recherche sur Internet]

© Serge Jodra, 2004. - Reproduction interdite.