.
-

A History of Science
Williams 
Tome I
Tome II
Tome III Tome IV

Book 4, chapter III
Chemistry since the time of Dalton
Humphry Davy and electro-chemistry
Williams
During those early years of the nineteenth century, when Dalton was grinding away at chemical fact and theory in his obscure Manchester laboratory, another Englishman held the attention of the chemical world with a series of the most brilliant and widely heralded researches. This was Humphry Davy, a young man who had conic to London in 1801, at the instance of Count Rumford, to assume the chair of chemical philosophy in the Royal Institution, which the famous American had just founded.

Here, under Davy's direction, the largest voltaic battery yet constructed had been put in operation, and with its aid the brilliant young experimenter was expected almost to perform miracles. And indeed he scarcely disappointed the expectation, for with the aid of his battery he transformed so familiar a substance as common potash into a metal which was not only so light that it floated on water, but possessed the seemingly miraculous property of bursting into flames as soon as it came in contact with that fire-quenching liquid. If this were not a miracle, it had for the popular eye all the appearance of the miraculous.

What Davy really had done was to decompose the potash, which hitherto had been supposed to be elementary, liberating its oxygen, and thus isolating its metallic base, which he named potassium. The same thing was done with soda, and the closely similar metal sodium was discovered - metals of a unique type, possessed of a strange avidity for oxygen, and capable of seizing on it even when it is bound up in the molecules of water. Considered as mere curiosities, these discoveries were interesting, but aside from that they were of great theoretical importance, because they showed the compound nature of some familiar chemicals that had been regarded as elements. Several other elementary earths met the same fate when subjected to the electrical influence; the metals barium, calcium, and strontium being thus discovered. Thereafter Davy always referred to the supposed elementary substances (including oxygen, hydrogen, and the rest) as "unde-compounded" bodies. These resist all present efforts to decompose them, but how can one know what might not happen were they subjected to an influence, perhaps some day to be discovered, which exceeds the battery in power as the battery exceeds the blowpipe?

Another and even more important theoretical result that flowed from Davy's experiments during this first decade of the century was the proof that no elementary substances other than hydrogen and oxygen are produced when pure water is decomposed by the electric current. It was early noticed by Davy and others that when a strong current is passed through water, alkalies appear at one pole of the battery and acids at the other, and this though the water used were absolutely pure. This seemingly told of the creation of elements - a transmutation but one step removed from the creation of matter itself - under the influence of the new "force." It was one of Davy's greatest triumphs to prove, in the series of experiments recorded in his famous Bakerian lecture of 1806, that the alleged creation of elements did not take place, the substances found at the poles of the battery having been dissolved from the walls of the vessels in which the water experimented upon had been placed. Thus the same implement which had served to give a certain philosophical warrant to the fading dreams of alchemy banished those dreams peremptorily from the domain of present science.

"As early as 1800," writes Davy, "I had found that when separate portions of distilled water, filling two glass tubes, connected by moist bladders, or any moist animal or vegetable substances, were submitted to the electrical action of the pile of Volta by means of gold wires, a nitro-muriatic solution of gold appeared in the tube containing the positive wire, or the wire transmitting the electricity, and a solution of soda in the opposite tube; but I soon ascertained that the muriatic acid owed its existence to the animal or vegetable matters employed; for when the same fibres of cotton were made use of in successive experiments, and washed after every process in a weak solution of nitric acid, the water in the apparatus containing them, though acted on for a great length of time with a very strong power, at last produced no effects upon nitrate of silver.

"In cases when I had procured much soda, the glass at its point of contact with the wire seemed considerably corroded; and I was confirmed in my idea of referring the production of the alkali principally to this source, by finding that no fixed saline matter could be obtained by electrifying distilled water in a single agate cup from two points of platina with the Voltaic battery.

"Mr. Sylvester, however, in a paper published in Mr. Nicholson's journal for last August, states that though no fixed alkali or muriatic acid appears when a single vessel is employed, yet that they are both formed when two vessels are used. And to do away with all objections with regard to vegetable substances or glass, he conducted his process in a vessel made of baked tobacco-pipe clay inserted in a crucible of platina. I have no doubt of the correctness of his results; but the conclusion appears objectionable. He conceives, that he obtained fixed alkali, because the fluid after being heated and evaporated left a matter that tinged turmeric brown, which would have happened had it been lime, a substance that exists in considerable quantities in all pipe-clay; and even allowing the presence of fixed alkali, the materials employed for the manufacture of tobacco-pipes are not at all such as to exclude the combinations of this substance.

"I resumed the inquiry; I procured small cylindrical cups of agate of the capacity of about one-quarter of a cubic inch each. They were boiled for some hours in distilled water, and a piece of very white and transparent amianthus that had been treated in the same way was made then to connect together; they were filled with distilled water and exposed by means of two platina wires to a current of electricity, from one hundred and fifty pairs of plates of copper and zinc four inches square, made active by means of solution of alum. After forty-eight hours the process was examined: Paper tinged with litmus plunged into the tube containing the transmitting or positive wire was immediately strongly reddened. Paper colored by turmeric introduced into the other tube had its color much deepened; the acid matter gave a very slight degree of turgidness to solution of nitrate of soda. The fluid that affected turmeric retained this property after being strongly boiled; and it appeared more vivid as the quantity became reduced by evaporation; carbonate of ammonia was mixed with it, and the whole dried and exposed to a strong heat; a minute quantity of white matter remained, which, as far as my examinations could go, had the properties of carbonate of soda. I compared it with similar minute portions of the pure carbonates of potash, and similar minute portions of the pure carbonates of potash and soda. It was not so deliquescent as the former of these bodies, and it formed a salt with nitric acid, which, like nitrate of soda, soon attracted moisture from a damp atmosphere and became fluid.

"This result was unexpected, but it was far from convincing me that the substances which were obtained were generated. In a similar process with glass tubes, carried on under exactly the same circumstances and for the same time, I obtained a quantity of alkali which must have been more than twenty times greater, but no traces of muriatic acid. There was much probability that the agate contained some minute portion of saline matter, not easily detected by chemical analysis, either in combination or intimate cohesion in its pores. To determine this, I repeated this a second, a third, and a fourth time. In the second experiment turbidness was still produced by a solution of nitrate of silver in the tube containing the acid, but it was less distinct; in the third process it was barely perceptible; and in the fourth process the two fluids remained perfectly clear after the mixture. The quantity of alkaline matter diminished in every operation; and in the last process, though the battery had been kept in great activity for three days, the fluid possessed, in a very slight degree, only the power of acting on paper tinged with turmeric; but its alkaline property was very sensible to litmus paper slightly reddened, which is a much more delicate test; and after evaporation and the process by carbonate of ammonia, a barely perceptible quantity of fixed alkali was still left. The acid matter in the other tube was abundant; its taste was sour; it smelled like water over which large quantities of nitrous gas have been long kept; it did not effect solution of muriate of barytes; and a drop of it placed upon a polished plate of silver left, after evaporation, a black stain, precisely similar to that produced by extremely diluted nitrous acid.

"After these results I could no longer doubt that some saline matter existing in the agate tubes had been the source of the acid matter capable of precipitating nitrate of silver and much of the alkali. Four additional repetitions of the process, however, convinced me that there was likewise some other cause for the presence of this last substance; for it continued to appear to the last in quantities sufficiently distinguishable, and apparently equal in every case. I had used every precaution, I had included the tube in glass vessels out of the reach of the circulating air; all the acting materials had been repeatedly washed with distilled water; and no part of them in contact with the fluid had been touched by the fingers.

"The only substance that I could now conceive as furnishing the fixed alkali was the water itself. This water appeared pure by the tests of nitrate of silver and muriate of barytes; but potash of soda, as is well known, rises in small quantities in rapid distillation; and the New River water which I made use of contains animal and vegetable impurities, which it was easy to conceive might furnish neutral salts capable of being carried over in vivid ebullition."[1] Further experiment proved the correctness of this inference, and the last doubt as to the origin of the puzzling chemical was dispelled.

Though the presence of the alkalies and acids in the water was explained, however, their respective migrations to the negative and positive poles of the battery remained to be accounted for. Davy's classical explanation assumed that different elements differ among themselves as to their electrical properties, some being positively, others negatively, electrified. Electricity and "chemical affinity," he said, apparently are manifestations of the same force, acting in the one case on masses, in the other on particles. Electro-positive particles unite with electro-negative particles to form chemical compounds, in virtue of the familiar principle that opposite electricities attract one another. When compounds are decomposed by the battery, this mutual attraction is overcome by the stronger attraction of the poles of the battery itself.

This theory of binary composition of all chemical compounds, through the union of electro-positive and electro-negative atoms or molecules, was extended by Berzelius, and made the basis of his famous system of theoretical chemistry. This theory held that all inorganic compounds, however complex their composition, are essentially composed of such binary combinations. For many years this view enjoyed almost undisputed sway. It received what seemed strong confirmation when Faraday showed the definite connection between the amount of electricity employed and the amount of decomposition produced in the so-called electrolyte. But its claims were really much too comprehensive, as subsequent discoveries proved.


 

 

.


[Littérature][Textes][Bibliothèque]

[Pages pratiques][Aide][Recherche sur Internet]

© Serge Jodra, 2006. - Reproduction interdite.