.
-

A History of Science
Williams 
Tome I
Tome II
Tome III Tome IV

Book 4, chapter II
The beginnings of modern chemistry
Joseph Priestley
Williams
While the opulent but diffident Cavendish was making his important discoveries, another Englishman, a poor country preacher named Joseph Priestley (1733-1804) was not only rivalling him, but, if anything, outstripping him in the pursuit of chemical discoveries. In 1761 this young minister was given a position as tutor in a nonconformist academy at Warrington, and here, for six years, he was able to pursue his studies in chemistry and electricity. In 1766, while on a visit to London, he met Benjamin Franklin, at whose suggestion he published his History of Electricity. From this time on he made steady progress in scientific investigations, keeping up his ecclesiastical duties at the same time. In 1780 he removed to Birmingham, having there for associates such scientists as James Watt, Boulton, and Erasmus Darwin.

Eleven years later, on the anniversary of the fall of the Bastile in Paris, a fanatical mob, knowing Priestley's sympathies with the French revolutionists, attacked his house and chapel, burning both and destroying a great number of valuable papers and scientific instruments. Priestley and his family escaped violence by flight, but his most cherished possessions were destroyed; and three years later he quitted England forever, removing to the United States, whose struggle for liberty he had championed. The last ten years of his life were spent at Northumberland, Pennsylvania, where he continued his scientific researches.

Early in his scientific career Priestley began investigations upon the "fixed air" of Dr. Black, and, oddly enough, he was stimulated to this by the same thing that had influenced Black - that is, his residence in the immediate neighborhood of a brewery. It was during the course of a series of experiments on this and other gases that he made his greatest discovery, that of oxygen, or "dephlogisticated air," as he called it. The story of this important discovery is probably best told in Priestley's own words:

"There are, I believe, very few maxims in philosophy that have laid firmer hold upon the mind than that air, meaning atmospheric air, is a simple elementary substance, indestructible and unalterable, at least as much so as water is supposed to be. In the course of my inquiries I was, however, soon satisfied that atmospheric air is not an unalterable thing; for that, according to my first hypothesis, the phlogiston with which it becomes loaded from bodies burning in it, and the animals breathing it, and various other chemical processes, so far alters and depraves it as to render it altogether unfit for inflammation, respiration, and other purposes to which it is subservient; and I had discovered that agitation in the water, the process of vegetation, and probably other natural processes, restore it to its original purity....

"Having procured a lens of twelve inches diameter and twenty inches local distance, I proceeded with the greatest alacrity, by the help of it, to discover what kind of air a great variety of substances would yield, putting them into the vessel, which I filled with quicksilver, and kept inverted in a basin of the same .... With this apparatus, after a variety of experiments .... on the 1st of August, 1774, I endeavored to extract air from mercurius calcinatus per se; and I presently found that, by means of this lens, air was expelled from it very readily. Having got about three or four times as much as the bulk of my materials, I admitted water to it, and found that it was not imbibed by it. But what surprised me more than I can express was that a candle burned in this air with a remarkably vigorous flame, very much like that enlarged flame with which a candle burns in nitrous oxide, exposed to iron or liver of sulphur; but as I had got nothing like this remarkable appearance from any kind of air besides this particular modification of vitrous air, and I knew no vitrous acid was used in the preparation of mercurius calcinatus, I was utterly at a loss to account for it."[4]

The "new air" was, of course, oxygen. Priestley at once proceeded to examine it by a long series of careful experiments, in which, as will be seen, he discovered most of the remarkable qualities of this gas. Continuing his description of these experiments, he says:

"The flame of the candle, besides being larger, burned with more splendor and heat than in that species of nitrous air; and a piece of red-hot wood sparkled in it, exactly like paper dipped in a solution of nitre, and it consumed very fast; an experiment that I had never thought of trying with dephlogisticated nitrous air.

". . . I had so little suspicion of the air from the mercurius calcinatus, etc., being wholesome, that I had not even thought of applying it to the test of nitrous air; but thinking (as my reader must imagine I frequently must have done) on the candle burning in it after long agitation in water, it occurred to me at last to make the experiment; and, putting one measure of nitrous air to two measures of this air, I found not only that it was diminished, but that it was diminished quite as much as common air, and that the redness of the mixture was likewise equal to a similar mixture of nitrous and common air.... The next day I was more surprised than ever I had been before with finding that, after the above-mentioned mixture of nitrous air and the air from mercurius calcinatus had stood all night, . . . a candle burned in it, even better than in common air."

A little later Priestley discovered that "dephlogisticated air . . . is a principal element in the composition of acids, and may be extracted by means of heat from many substances which contain them.... It is likewise produced by the action of light upon green vegetables; and this seems to be the chief means employed to preserve the purity of the atmosphere."

This recognition of the important part played by oxygen in the atmosphere led Priestley to make some experiments upon mice and insects, and finally upon himself, by inhalations of the pure gas. "The feeling in my lungs," he said, "was not sensibly different from that of common air, but I fancied that my breathing felt peculiarly light and easy for some time afterwards. Who can tell but that in time this pure air may become a fashionable article in luxury? . . . Perhaps we may from these experiments see that though pure dephlogisticated air might be useful as a medicine, it might not be so proper for us in the usual healthy state of the body."

This suggestion as to the possible usefulness of oxygen as a medicine was prophetic. A century later the use of oxygen had become a matter of routine practice with many physicians. Even in Priestley's own time such men as Dr. John Hunter expressed their belief in its efficacy in certain conditions, as we shall see, but its value in medicine was not fully appreciated until several generations later.

Several years after discovering oxygen Priestley thus summarized its properties: "It is this ingredient in the atmospheric air that enables it to support combustion and animal life. By means of it most intense heat may be produced, and in the purest of it animals will live nearly five times as long as in an equal quantity of atmospheric air. In respiration, part of this air, passing the membranes of the lungs, unites with the blood and imparts to it its florid color, while the remainder, uniting with phlogiston exhaled from venous blood, forms mixed air. It is dephlogisticated air combined with water that enables fishes to live in it."[5]


 

 

.


[Littérature][Textes][Bibliothèque]

[Pages pratiques][Aide][Recherche sur Internet]

© Serge Jodra, 2006. - Reproduction interdite.