.
-

A History of Science
Williams 
Tome I
Tome II
Tome III Tome IV

Book 3, chapter VII
The modern development of electricity and magnetism
Roentgen rays, or X-rays
Williams
In December of 1895 word came out of Germany of a scientific discovery that startled the world. It came first as a rumor, little credited; then as a pronounced report; at last as a demonstration. It told of a new manifestation of energy, in virtue of which the interior of opaque objects is made visible to human eyes. One had only to look into a tube containing a screen of a certain composition, and directed towards a peculiar electrical apparatus, to acquire clairvoyant vision more wonderful than the discredited second-sight of the medium. Coins within a purse, nails driven into wood, spectacles within a leather case, became clearly visible when subjected to the influence of this magic tube; and when a human hand was held before the tube, its bones stood revealed in weird simplicity, as if the living, palpitating flesh about them were but the shadowy substance of a ghost.

Not only could the human eye see these astounding revelations, but the impartial evidence of inanimate chemicals could be brought forward to prove that the mind harbored no illusion. The photographic film recorded the things that the eye might see, and ghostly pictures galore soon gave a quietus to the doubts of the most sceptical. Within a month of the announcement of Professor Roentgen's experiments comment upon the "X-ray" and the "new photography" had become a part of the current gossip of all Christendom.

It is hardly necessary to say that such a revolutionary thing as the discovery of a process whereby opaque objects became transparent, or translucent, was not achieved at a single bound with no intermediate discoveries. In 1859 the German physicist Julius Plucker (1801-1868) noticed that when there was an electrical discharge through an exhausted tube at a low pressure, on the surrounding walls of the tube near the negative pole, or cathode, appeared a greenish phosphorescence. This discovery was soon being investigated by a number of other scientists, among others Hittorf, Goldstein, and Professor (now Sir William) Crookes. The explanations given of this phenomenon by Professor Crookes concern us here more particularly, inasmuch as his views did not accord exactly with those held by the other two scientists, and as his researches were more directly concerned in the discovery of the Roentgen rays. He held that the heat and phosphorescence produced in a low-pressure tube were caused by streams of particles, projected from the cathode with great velocity, striking the sides of the glass tube. The composition of the glass seemed to enter into this phosphorescence also, for while lead glass produced blue phosphorescence, soda glass produced a yellowish green. The composition of the glass seemed to be changed by a long-continued pelting of these particles, the phosphorescence after a time losing its initial brilliancy, caused by the glass becoming "tired," as Professor Crookes said. Thus when some opaque substance, such as iron, is placed between the cathode and the sides of the glass tube so that it casts a shadow in a certain spot on the glass for some little time, it is found on removing the opaque substance or changing its position that the area of glass at first covered by the shadow now responded to the rays in a different manner from the surrounding glass.

The peculiar ray's, now known as the cathode rays, not only cast a shadow, but are deflected by a magnet, so that the position of the phosphorescence on the sides of the tube may be altered by the proximity of a powerful magnet. From this it would seem that the rays are composed of particles charged with negative electricity, and Professor J. J. Thomson has modified the experiment of Perrin to show that negative electricity is actually associated with the rays. There is reason for believing, therefore, that the cathode rays are rapidly moving charges of negative electricity. It is possible, also, to determine the velocity at which these particles are moving by measuring the deflection produced by the magnetic field.

From the fact that opaque substances cast a shadow in these rays it was thought at first that all solids were absolutely opaque to them. Hertz, however, discovered that a small amount of phosphorescence occurred on the glass even when such opaque substances as gold-leaf or aluminium foil were interposed between the cathode and the sides of the tube. Shortly afterwards Lenard discovered that the cathode rays can be made to pass from the inside of a discharge tube to the outside air. For convenience these rays outside the tube have since been known as "Lenard rays."

In the closing days of December, 1895, Professor Wilhelm Konrad Roentgen, of Wurzburg, announced that he had made the discovery of the remarkable effect arising from the cathode rays to which reference was made above. He found that if a plate covered with a phosphorescent substance is placed near a discharge tube exhausted so highly that the cathode rays produced a green phosphorescence, this plate is made to glow in a peculiar manner. The rays producing this glow were not the cathode rays, although apparently arising from them, and are what have since been called the Roentgen rays, or X-rays.

Roentgen found that a shadow is thrown upon the screen by substances held between it and the exhausted tube, the character of the shadow depending upon the density of the substance. Thus metals are almost completely opaque to the rays; such substances as bone much less so, and ordinary flesh hardly so at all. If a coin were held in the hand that had been interposed between the tube and the screen the picture formed showed the coin as a black shadow; and the bones of the hand, while casting a distinct shadow, showed distinctly lighter; while the soft tissues produced scarcely any shadow at all. The value of such a discovery was obvious from the first; and was still further enhanced by the discovery made shortly that, photographic plates are affected by the rays, thus making it possible to make permanent photographic records of pictures through what we know as opaque substances.

What adds materially to the practical value of Roentgen's discovery is the fact that the apparatus for producing the X-rays is now so simple and relatively inexpensive that it is within the reach even of amateur scientists. It consists essentially of an induction coil attached either to cells or a street-current plug for generating the electricity, a focus tube, and a phosphorescence screen. These focus tubes are made in various shapes, but perhaps the most popular are in the form of a glass globe, not unlike an ordinary small-sized water-bottle, this tube being closed and exhausted, and having the two poles (anode and cathode) sealed into the glass walls, but protruding at either end for attachment to the conducting wires from the induction coil. This tube may be mounted on a stand at a height convenient for manipulation. The phosphorescence screen is usually a plate covered with some platino-cyanide and mounted in the end of a box of convenient size, the opposite end of which is so shaped that it fits the contour of the face, shutting out the light and allowing the eyes of the observer to focalize on the screen at the end. For making observations the operator has simply to turn on the current of electricity and apply the screen to his eyes, pointing it towards the glowing tube, when the shadow of any substance interposed between the tube and the screen will appear upon the phosphorescence plate.

The wonderful shadow pictures produced on the phosphorescence screen, or the photographic plate, would seem to come from some peculiar form of light, but the exact nature of these rays is still an open question. Whether the Roentgen rays are really a form of light - that is, a form of "electro-magnetic disturbance propagated through ether," is not fully determined. Numerous experiments have been undertaken to determine this, but as yet no proof has been found that the rays are a form of light, although there appears to be nothing in their properties inconsistent with their being so. For the moment most investigators are content to admit that the term X-ray virtually begs the question as to the intimate nature of the form of energy involved.


 

 

.


[Littérature][Textes][Bibliothèque]

[Pages pratiques][Aide][Recherche sur Internet]

© Serge Jodra, 2006. - Reproduction interdite.