.
-

A History of Science
Williams 
Tome I
Tome II
Tome III Tome IV

Book 2, chapter V
Galileo and the new physics
Stevinus and the law of equilibrium
Williams
It appears, then, that the mechanical studies of Galileo, taken as a whole, were nothing less than revolutionary. They constituted the first great advance upon the dynamic studies of Archimedes, and then led to the secure foundation for one of the most important of modern sciences. We shall see that an important company of students entered the field immediately after the time of Galileo, and carried forward the work he had so well begun. But before passing on to the consideration of their labors, we must consider work in allied fields of two men who were contemporaries of Galileo and whose original labors were in some respects scarcely less important than his own. These men are the Dutchman Stevinus, who must always be remembered as a co-laborer with Galileo in the foundation of the science of dynamics, and the Englishman Gilbert, to whom is due the unqualified praise of first subjecting the phenomenon of magnetism to a strictly scientific investigation.

Stevinus was born in the year 1548, and died in 1620. He was a man of a practical genius, and he attracted the attention of his non-scientific contemporaries, among other ways, by the construction of a curious land-craft, which, mounted on wheels, was to be propelled by sails like a boat. Not only did he write a book on this curious horseless carriage, but he put his idea into practical application, producing a vehicle which actually traversed the distance between Scheveningen and Petton, with no fewer than twenty-seven passengers, one of them being Prince Maurice of Orange. This demonstration was made about the year 1600. It does not appear, however, that any important use was made of the strange vehicle; but the man who invented it put his mechanical ingenuity to other use with better effect. It was he who solved the problem of oblique forces, and who discovered the important hydrostatic principle that the pressure of fluids is proportionate to their depth, without regard to the shape of the including vessel.

The study of oblique forces was made by Stevinus with the aid of inclined planes. His most demonstrative experiment was a very simple one, in which a chain of balls of equal weight was hung from a triangle; the triangle being so constructed as to rest on a horizontal base, the oblique sides bearing the relation to each other of two to one. Stevinus found that his chain of balls just balanced when four balls were on the longer side and two on the shorter and steeper side. The balancing of force thus brought about constituted a stable equilibrium, Stevinus being the first to discriminate between such a condition and the unbalanced condition called unstable equilibrium. By this simple experiment was laid the foundation of the science of statics. Stevinus had a full grasp of the principle which his experiment involved, and he applied it to the solution of oblique forces in all directions. Earlier investigations of Stevinus were published in 1608. His collected works were published at Leyden in 1634.

This study of the equilibrium of pressure of bodies at rest led Stevinus, not unnaturally, to consider the allied subject of the pressure of liquids. He is to be credited with the explanation of the so-called hydrostatic paradox. The familiar modern experiment which illustrates this paradox is made by inserting a long perpendicular tube of small caliber into the top of a tight barrel. On filling the barrel and tube with water, it is possible to produce a pressure which will burst the barrel, though it be a strong one, and though the actual weight of water in the tube is comparatively insignificant. This illustrates the fact that the pressure at the bottom of a column of liquid is proportionate to the height of the column, and not to its bulk, this being the hydrostatic paradox in question. The explanation is that an enclosed fluid under pressure exerts an equal force upon all parts of the circumscribing wall; the aggregate pressure may, therefore, be increased indefinitely by increasing the surface. It is this principle, of course, which is utilized in the familiar hydrostatic press. Theoretical explanations of the pressure of liquids were supplied a generation or two later by numerous investigators, including Newton, but the practical refoundation of the science of hydrostatics in modern times dates from the experiments of Stevinus.


 

 

.


[Littérature][Textes][Bibliothèque]

[Pages pratiques][Aide][Recherche sur Internet]

© Serge Jodra, 2006. - Reproduction interdite.